A moving least square reproducing kernel particle method for unified multiphase continuum simulation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Least Square Reproducing Kernel Method ( III ) : Wavelet Packet & Its

This work is a natural extension of the work done in Part II of this series. A new partition of unity | the synchronized reproducing kernel (SRK) interpolant|is proposed within the framework of moving least square reproducing kernel representation. It is a further development and generalization of the reproducing kernel particle method (RKPM), which demonstrates some superior computational capa...

متن کامل

Moving least-square reproducing kernel method Part II: Fourier analysis

In Part I of this work, the moving least-square reproducing kernel (MLSRK) method is formulated and implemented. Based on its generic construction, an m-consistency structure is discovered and the convergence theorems are established. In this par\ of the work, a systematic Fourier analysis is employed to evaluate and further establish the method. The preliminary Fourier analysis reveals that th...

متن کامل

Moving least-square reproducing kernel methods (I) Methodology and convergence

This paper formulates the moving least-square interpolation scheme in a framework of the so-called moving least-square reproducing kernel (MLSRK) representation. In this study, the procedure of constructing moving least square interpolation function is facilitated by using the notion of reproducing kernel formulation, which, ‘as a generalization of the early discrete approach, establishes a con...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Reproducing Kernel Banach Spaces with the ℓ1 Norm II: Error Analysis for Regularized Least Square Regression

A typical approach in estimating the learning rate of a regularized learning scheme is to bound the approximation error by the sum of the sampling error, the hypothesis error and the regularization error. Using a reproducing kernel space that satisfies the linear representer theorem brings the advantage of discarding the hypothesis error from the sum automatically. Following this direction, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Graphics

سال: 2020

ISSN: 0730-0301,1557-7368

DOI: 10.1145/3414685.3417809